ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0704.2644
484
2

Joint universal lossy coding and identification of stationary mixing sources

20 April 2007
Maxim Raginsky
ArXiv (abs)PDFHTML
Abstract

The problem of joint universal source coding and modeling, treated in the context of lossless codes by Rissanen, was recently generalized to fixed-rate lossy coding of finitely parametrized continuous-alphabet i.i.d. sources. We extend these results to variable-rate lossy block coding of stationary ergodic sources and show that, for bounded metric distortion measures, any finitely parametrized family of stationary sources satisfying suitable mixing, smoothness and Vapnik-Chervonenkis learnability conditions admits universal schemes for joint lossy source coding and identification. We also give several explicit examples of parametric sources satisfying the regularity conditions.

View on arXiv
Comments on this paper