ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0705.0693
419
8

Learning to Bluff

7 May 2007
E. Hurwitz
T. Marwala
ArXiv (abs)PDFHTML
Abstract

The act of bluffing confounds game designers to this day. The very nature of bluffing is even open for debate, adding further complication to the process of creating intelligent virtual players that can bluff, and hence play, realistically. Through the use of intelligent, learning agents, and carefully designed agent outlooks, an agent can in fact learn to predict its opponents reactions based not only on its own cards, but on the actions of those around it. With this wider scope of understanding, an agent can in learn to bluff its opponents, with the action representing not an illogical action, as bluffing is often viewed, but rather as an act of maximising returns through an effective statistical optimisation. By using a tee dee lambda learning algorithm to continuously adapt neural network agent intelligence, agents have been shown to be able to learn to bluff without outside prompting, and even to learn to call each others bluffs in free, competitive play.

View on arXiv
Comments on this paper