ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0705.1585
358
4

HMM Speaker Identification Using Linear and Non-linear Merging Techniques

11 May 2007
Unathi Mahola
F. Nelwamondo
T. Marwala
    MoMe
ArXiv (abs)PDFHTML
Abstract

Speaker identification is a powerful, non-invasive and in-expensive biometric technique. The recognition accuracy, however, deteriorates when noise levels affect a specific band of frequency. In this paper, we present a sub-band based speaker identification that intends to improve the live testing performance. Each frequency sub-band is processed and classified independently. We also compare the linear and non-linear merging techniques for the sub-bands recognizer. Support vector machines and Gaussian Mixture models are the non-linear merging techniques that are investigated. Results showed that the sub-band based method used with linear merging techniques enormously improved the performance of the speaker identification over the performance of wide-band recognizers when tested live. A live testing improvement of 9.78% was achieved

View on arXiv
Comments on this paper