
Let be complex self-adjoint matrices and let be a density matrix. The Robertson uncertainty principle gives a bound for the quantum generalized covariance in terms of the commutators . The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case . Let be an arbitrary normalized symmetric operator monotone function and let be the associated quantum Fisher information. In this paper we conjecture the inequality that gives a non-trivial bound for any natural number using the commutators . The inequality has been proved in the cases by the joint efforts of many authors. In this paper we prove the case N=3 for real matrices.
View on arXiv