ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0706.4394
361
71

Improvements on removing non-optimal support points in D-optimum design algorithms

29 June 2007
Radoslav Harman
L. Pronzato
ArXiv (abs)PDFHTML
Abstract

We improve the inequality used in Pronzato [2003. Removing non-optimal support points in D-optimum design algorithms. Statist. Probab. Lett. 63, 223-228] to remove points from the design space during the search for a DDD-optimum design. Let ξ\xiξ be any design on a compact space X⊂Rm\mathcal{X} \subset \mathbb{R}^mX⊂Rm with a nonsingular information matrix, and let m+ϵm+\epsilonm+ϵ be the maximum of the variance function d(ξ,x)d(\xi,\mathbf{x})d(ξ,x) over all x∈X\mathbf{x} \in \mathcal{X}x∈X. We prove that any support point x∗\mathbf{x}_{*}x∗​ of a DDD-optimum design on X\mathcal{X}X must satisfy the inequality d(ξ,x∗)≥m(1+ϵ/2−ϵ(4+ϵ−4/m)/2)d(\xi,\mathbf{x}_{*}) \geq m(1+\epsilon/2-\sqrt{\epsilon(4+\epsilon-4/m)}/2)d(ξ,x∗​)≥m(1+ϵ/2−ϵ(4+ϵ−4/m)​/2). We show that this new lower bound on d(ξ,x∗)d(\xi,\mathbf{x}_{*})d(ξ,x∗​) is, in a sense, the best possible, and how it can be used to accelerate algorithms for DDD-optimum design.

View on arXiv
Comments on this paper