421

Degenerating families of dendrograms

Journal of Classification (J. Classif.), 2007
Abstract

Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist pp-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the pp-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are pp-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.

View on arXiv
Comments on this paper