50
40

Complete enumeration of two-Level orthogonal arrays of strength dd with d+2d+2 constraints

Abstract

Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength dd with d+2d+2 constraints for any dd and any run size n=λ2dn=\lambda2^d. Our results not only give the number of nonisomorphic orthogonal arrays for given dd and nn, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of JJ-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.

View on arXiv
Comments on this paper