103
39

Adjusted Viterbi training for hidden Markov models

Abstract

To estimate the emission parameters in hidden Markov models one commonly uses the EM algorithm or its variation. Our primary motivation, however, is the Philips speech recognition system wherein the EM algorithm is replaced by the Viterbi training algorithm. Viterbi training is faster and computationally less involved than EM, but it is also biased and need not even be consistent. We propose an alternative to the Viterbi training -- adjusted Viterbi training -- that has the same order of computational complexity as Viterbi training but gives more accurate estimators. Elsewhere, we studied the adjusted Viterbi training for a special case of mixtures, supporting the theory by simulations. This paper proves the adjusted Viterbi training to be also possible for more general hidden Markov models.

View on arXiv
Comments on this paper