Graphical models for marked point processes based on local independence

A new class of graphical models capturing the dependence structure of events that occur in time is proposed. The graphs represent so-called local independences, meaning that the intensities of certain types of events are independent of some (but not necessarily all) events in the past. This dynamic concept of independence is asymmetric, similar to Granger non-causality, so that the corresponding local independence graphs differ considerably from classical graphical models. Hence a new notion of graph separation, called delta-separation, is introduced and implications for the underlying model as well as for likelihood inference are explored. Benefits regarding facilitation of reasoning about and understanding of dynamic dependencies as well as computational simplifications are discussed.
View on arXiv