48
1

Managing Uncertainty: A Case for Probabilistic Grid Scheduling

Abstract

The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.