382
v1v2v3v4v5 (latest)

Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser

Advances in Applied Mathematics (AAM), 2008
Abstract

On March 2004, Anshel, Anshel, Goldfeld, and Lemieux introduced the \emph{Algebraic Eraser} scheme for key agreement over an insecure channel, using a novel hybrid of infinite and finite noncommutative groups. They also introduced the \emph{Colored Burau Key Agreement Protocol (CBKAP)}, a concrete realization of this scheme. We present general, efficient heuristic algorithms, which extract the shared key out of the public information provided by CBKAP. These algorithms are, according to heuristic reasoning and according to massive experiments, successful for all sizes of the security parameters, assuming that the keys are chosen with standard distributions. Our methods come from probabilistic group theory (permutation group actions and expander graphs). In particular, we provide a simple algorithm for finding short expressions of permutations in SnS_n, as products of given random permutations. Heuristically, our algorithm gives expressions of length O(n2logn)O(n^2\log n), in time and space O(n3)O(n^3). Moreover, this is provable from \emph{the Minimal Cycle Conjecture}, a simply stated hypothesis concerning the uniform distribution on SnS_n. Experiments show that the constants in these estimations are small. This is the first practical algorithm for this problem for n256n\ge 256. Remark: \emph{Algebraic Eraser} is a trademark of SecureRF. The variant of CBKAP actually implemented by SecureRF uses proprietary distributions, and thus our results do not imply its vulnerability. See also arXiv:abs/12020598

View on arXiv
Comments on this paper