ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0804.1607
68
113

Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models

10 April 2008
S. Ram
V. Veeravalli
A. Nedić
ArXivPDFHTML
Abstract

We consider a network of sensors deployed to sense a spatio-temporal field and estimate a parameter of interest. We are interested in the case where the temporal process sensed by each sensor can be modeled as a state-space process that is perturbed by random noise and parametrized by an unknown parameter. To estimate the unknown parameter from the measurements that the sensors sequentially collect, we propose a distributed and recursive estimation algorithm, which we refer to as the incremental recursive prediction error algorithm. This algorithm has the distributed property of incremental gradient algorithms and the on-line property of recursive prediction error algorithms. We study the convergence behavior of the algorithm and provide sufficient conditions for its convergence. Our convergence result is rather general and contains as special cases the known convergence results for the incremental versions of the least-mean square algorithm. Finally, we use the algorithm developed in this paper to identify the source of a gas-leak (diffusing source) in a closed warehouse and also report numerical simulations to verify convergence.

View on arXiv
Comments on this paper