102
39

Gaussian limits for generalized spacings

Abstract

Nearest neighbor cells in Rd,dNR^d,d\in\mathbb{N}, are used to define coefficients of divergence (ϕ\phi-divergences) between continuous multivariate samples. For large sample sizes, such distances are shown to be asymptotically normal with a variance depending on the underlying point density. In d=1d=1, this extends classical central limit theory for sum functions of spacings. The general results yield central limit theorems for logarithmic kk-spacings, information gain, log-likelihood ratios and the number of pairs of sample points within a fixed distance of each other.

View on arXiv
Comments on this paper