45
0

Model selection and sensitivity analysis for sequence pattern models

Abstract

In this article we propose a maximal a posteriori (MAP) criterion for model selection in the motif discovery problem and investigate conditions under which the MAP asymptotically gives a correct prediction of model size. We also investigate robustness of the MAP to prior specification and provide guidelines for choosing prior hyper-parameters for motif models based on sensitivity considerations.

View on arXiv
Comments on this paper