We consider first the mixed discrete-continuous scheme of observation in multistate models; this is a classical pattern in epidemiology because very often clinical status is assessed at discrete visit times while times of death or other events are observed exactly. A heuristic likelihood can be written for such models, at least for Markov models; however, a formal proof is not easy and has not been given yet. We present a general class of possibly non-Markov multistate models which can be represented naturally as multivariate counting processes. We give a rigorous derivation of the likelihood based on applying Jacod's formula for the full likelihood and taking conditional expectation for the observed likelihood. A local description of the likelihood allows us to extend the result to a more general coarsening observation scheme proposed by Commenges & G\égout-Petit. The approach is illustrated by considering models for dementia, institutionalization and death.
View on arXiv