On Approximating the Lp Distances for p>2

Applications in machine learning and data mining require computing pairwise Lp distances in a data matrix A. For massive high-dimensional data, computing all pairwise distances of A can be infeasible. In fact, even storing A or all pairwise distances of A in the memory may be also infeasible. This paper proposes a simple method for p = 2, 4, 6, ... We first decompose the l_p (where p is even) distances into a sum of 2 marginal norms and p-1 ``inner products'' at different orders. Then we apply normal or sub-Gaussian random projections to approximate the resultant ``inner products,'' assuming that the marginal norms can be computed exactly by a linear scan. We propose two strategies for applying random projections. The basic projection strategy requires only one projection matrix but it is more difficult to analyze, while the alternative projection strategy requires p-1 projection matrices but its theoretical analysis is much easier. In terms of the accuracy, at least for p=4, the basic strategy is always more accurate than the alternative strategy if the data are non-negative, which is common in reality.
View on arXiv