44
47

Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh

Abstract

Jayanta Kumar Ghosh is one of the most extraordinary professors in the field of Statistics. His research in numerous areas, especially asymptotics, has been groundbreaking, influential throughout the world, and widely recognized through awards and other honors. His leadership in Statistics as Director of the Indian Statistical Institute and President of the International Statistical Institute, among other eminent positions, has been likewise outstanding. In recognition of Jayanta's enormous impact, this volume is an effort to honor him by drawing together contributions to the main areas in which he has worked and continues to work. The papers naturally fall into five categories. First, sequential estimation was Jayanta's starting point. Thus, beginning with that topic, there are two papers, one classical by Hall and Ding leading to a variant on p-values, and one Bayesian by Berger and Sun extending reference priors to stopping time problems. Second, there are five papers in the general area of prior specification. Much of Jayanta's earlier work involved group families as does Sweeting's paper here for instance. There are also two papers dwelling on the link between fuzzy sets and priors, by Meeden and by Delampady and Angers. Equally daring is the work by Mukerjee with data dependent priors and the pleasing confluence of several prior selection criteria found by Ghosh, Santra and Kim. Jayanta himself studied a variety of prior selection criteria including probability matching priors and reference priors.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.