ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0810.3995
76
11

Asymptotic normality and consistency of a two-stage generalized least squares estimator in the growth curve model

22 October 2008
Jianhua Hu
G. Yan
ArXiv (abs)PDFHTML
Abstract

Let Y=X\boldsΘZ′+\boldsE\mathbf{Y}=\mathbf{X}\bolds{\Theta}\mathbf{Z}'+\bolds{\mathcal {E}}Y=X\boldsΘZ′+\boldsE be the growth curve model with \boldsE\bolds{\mathcal{E}}\boldsE distributed with mean 0\mathbf{0}0 and covariance In⊗\boldsΣ\mathbf{I}_n\otimes\bolds{\Sigma}In​⊗\boldsΣ, where \boldsΘ\bolds{\Theta}\boldsΘ, \boldsΣ\bolds{\Sigma}\boldsΣ are unknown matrices of parameters and X\mathbf{X}X, Z\mathbf{Z}Z are known matrices. For the estimable parametric transformation of the form \boldsγ=C\boldsΘD′\bolds {\gamma}=\mathbf{C}\bolds{\Theta}\mathbf{D}'\boldsγ=C\boldsΘD′ with given C\mathbf{C}C and D\mathbf{D}D, the two-stage generalized least-squares estimator \boldsγ^(Y)\hat{\bolds \gamma}(\mathbf{Y})\boldsγ^​(Y) defined in (7) converges in probability to \boldsγ\bolds\gamma\boldsγ as the sample size nnn tends to infinity and, further, n[\boldsγ^(Y)−\boldsγ]\sqrt{n}[\hat{\bolds{\gamma}}(\mathbf{Y})-\bolds {\gamma}]n​[\boldsγ^​(Y)−\boldsγ] converges in distribution to the multivariate normal distribution \mathcalN(0,(CR−1C′)⊗(\mathbfD(Z′\boldsΣ−1Z)−1D′))\ma thcal{N}(\mathbf{0},(\mathbf{C}\mathbf{R}^{-1}\mathbf{C}')\otimes(\mat hbf{D}(\mathbf{Z}'\bolds{\Sigma}^{-1}\mathbf{Z})^{-1}\mathbf{D}'))\mathcalN(0,(CR−1C′)⊗(\mathbfD(Z′\boldsΣ−1Z)−1D′)) under the condition that lim⁡n→∞X′X/n=R\lim_{n\to\infty}\mathbf{X}'\mathbf{X}/n=\mathbf{R}limn→∞​X′X/n=R for some positive definite matrix R\mathbf{R}R. Moreover, the unbiased and invariant quadratic estimator \boldsΣ^(Y)\hat{\bolds{\Sigma}}(\mathbf{Y})\boldsΣ^​(Y) defined in (6) is also proved to be consistent with the second-order parameter matrix \boldsΣ\bolds{\Sigma}\boldsΣ.

View on arXiv
Comments on this paper