ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0811.3499
73
3

Kernel Regression by Mode Calculation of the Conditional Probability Distribution

21 November 2008
Steffen Kuehn
ArXiv (abs)PDFHTML
Abstract

The most direct way to express arbitrary dependencies in datasets is to estimate the joint distribution and to apply afterwards the argmax-function to obtain the mode of the corresponding conditional distribution. This method is in practice difficult, because it requires a global optimization of a complicated function, the joint distribution by fixed input variables. This article proposes a method for finding global maxima if the joint distribution is modeled by a kernel density estimation. Some experiments show advantages and shortcomings of the resulting regression method in comparison to the standard Nadaraya-Watson regression technique, which approximates the optimum by the expectation value.

View on arXiv
Comments on this paper