ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.0659
34
0

Probabilistic reasoning with answer sets

3 December 2008
Chitta Baral
Michael Gelfond
Nelson Rushton
    LRM
ArXiv (abs)PDFHTML
Abstract

This paper develops a declarative language, P-log, that combines logical and probabilistic arguments in its reasoning. Answer Set Prolog is used as the logical foundation, while causal Bayes nets serve as a probabilistic foundation. We give several non-trivial examples and illustrate the use of P-log for knowledge representation and updating of knowledge. We argue that our approach to updates is more appealing than existing approaches. We give sufficiency conditions for the coherency of P-log programs and show that Bayes nets can be easily mapped to coherent P-log programs.

View on arXiv
Comments on this paper