ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.1388
79
0
v1v2 (latest)

Model-Based Clustering using multi-allelic loci data with loci selection

7 December 2008
Wilson Toussile
Elisabeth Gassiat
ArXiv (abs)PDFHTML
Abstract

We propose a Model-Based Clustering (MBC) method combined with loci selection using multi-allelic loci genetic data. The loci selection problem is regarded as a model selection problem and models in competition are compared with the Bayesian Information Criterion (BIC). The resulting procedure selects the subset of clustering loci, the number of clusters, estimates the proportion of each cluster and the allelic frequencies within each cluster. We prove that the selected model converges in probability to the true model under a single realistic assumption as the size of the sample tends to infinity. The proposed method named MixMoGenD (Mixture Model using Genetic Data) was implemented using c++ programming language. Numerical experiments on simulated data sets was conducted to highlight the interest of the proposed loci selection procedure.

View on arXiv
Comments on this paper