ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.1869
106
141

Convex Sparse Matrix Factorizations

10 December 2008
Francis R. Bach
Julien Mairal
Jean Ponce
ArXivPDFHTML
Abstract

We present a convex formulation of dictionary learning for sparse signal decomposition. Convexity is obtained by replacing the usual explicit upper bound on the dictionary size by a convex rank-reducing term similar to the trace norm. In particular, our formulation introduces an explicit trade-off between size and sparsity of the decomposition of rectangular matrices. Using a large set of synthetic examples, we compare the estimation abilities of the convex and non-convex approaches, showing that while the convex formulation has a single local minimum, this may lead in some cases to performance which is inferior to the local minima of the non-convex formulation.

View on arXiv
Comments on this paper