ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0901.1365
108
65

Differential Privacy with Compression

10 January 2009
Shuheng Zhou
Katrina Ligett
Larry A. Wasserman
ArXivPDFHTML
Abstract

This work studies formal utility and privacy guarantees for a simple multiplicative database transformation, where the data are compressed by a random linear or affine transformation, reducing the number of data records substantially, while preserving the number of original input variables. We provide an analysis framework inspired by a recent concept known as differential privacy (Dwork 06). Our goal is to show that, despite the general difficulty of achieving the differential privacy guarantee, it is possible to publish synthetic data that are useful for a number of common statistical learning applications. This includes high dimensional sparse regression (Zhou et al. 07), principal component analysis (PCA), and other statistical measures (Liu et al. 06) based on the covariance of the initial data.

View on arXiv
Comments on this paper