ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0903.0623
82
40
v1v2 (latest)

Some Diffusion Processes Associated With Two Parameter Poisson-Dirichlet Distribution and Dirichlet Process

3 March 2009
S. Feng
Wei Sun
ArXiv (abs)PDFHTML
Abstract

The two parameter Poisson-Dirichlet distribution PD(α,θ)PD(\alpha,\theta)PD(α,θ) is the distribution of an infinite dimensional random discrete probability. It is a generalization of Kingman's Poisson-Dirichlet distribution. The two parameter Dirichlet process Πα,θ,ν0\Pi_{\alpha,\theta,\nu_0}Πα,θ,ν0​​ is the law of a pure atomic random measure with masses following the two parameter Poisson-Dirichlet distribution. In this article we focus on the construction and the properties of the infinite dimensional symmetric diffusion processes with respective symmetric measures PD(α,θ)PD(\alpha,\theta)PD(α,θ) and Πα,θ,ν0\Pi_{\alpha,\theta,\nu_0}Πα,θ,ν0​​. The methods used come from the theory of Dirichlet forms.

View on arXiv
Comments on this paper