ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0903.1389
92
76

A Linear Programming Driven Genetic Algorithm for Meta-Scheduling on Utility Grids

8 March 2009
Saurabh Garg
P. Konugurthi
Rajkumar Buyya
ArXiv (abs)PDFHTML
Abstract

The user-level brokers in grids consider individual application QoS requirements and minimize their cost without considering demands from other users. This results in contention for resources and sub-optimal schedules. Meta-scheduling in grids aims to address this scheduling problem, which is NP hard due to its combinatorial nature. Thus, many heuristic-based solutions using Genetic Algorithm (GA) have been proposed, apart from traditional algorithms such as Greedy and FCFS. We propose a Linear Programming/Integer Programming model (LP/IP) for scheduling these applications to multiple resources. We also propose a novel algorithm LPGA (Linear programming driven Genetic Algorithm) which combines the capabilities of LP and GA. The aim of this algorithm is to obtain the best metaschedule for utility grids which minimize combined cost of all users in a coordinated manner. Simulation results show that our proposed integrated algorithm offers the best schedule having the minimum processing cost with negligible time overhead.

View on arXiv
Comments on this paper