53
0

Conditional Probability Tree Estimation Analysis and Algorithms

Abstract

We consider the problem of estimating the conditional probability of a label in time O(logn)O(\log n), where nn is the number of possible labels. We analyze a natural reduction of this problem to a set of binary regression problems organized in a tree structure, proving a regret bound that scales with the depth of the tree. Motivated by this analysis, we propose the first online algorithm which provably constructs a logarithmic depth tree on the set of labels to solve this problem. We test the algorithm empirically, showing that it works succesfully on a dataset with roughly 10610^6 labels.

View on arXiv
Comments on this paper