ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0904.0316
61
20

On the Forward Filtering Backward Smoothing particle approximations of the smoothing distribution in general state spaces models

2 April 2009
Randal Douc
Aurélien Garivier
Eric Moulines
Jimmy Olsson
ArXivPDFHTML
Abstract

A prevalent problem in general state-space models is the approximation of the smoothing distribution of a state, or a sequence of states, conditional on the observations from the past, the present, and the future. The aim of this paper is to provide a rigorous foundation for the calculation, or approximation, of such smoothed distributions, and to analyse in a common unifying framework different schemes to reach this goal. Through a cohesive and generic exposition of the scientific literature we offer several novel extensions allowing to approximate joint smoothing distribution in the most general case with a cost growing linearly with the number of particles.

View on arXiv
Comments on this paper