ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0906.3149
79
1

Semi-Myopic Sensing Plans for Value Optimization

17 June 2009
David Tolpin
Solomon Eyal Shimony
ArXiv (abs)PDFHTML
Abstract

We consider the following sequential decision problem. Given a set of items of unknown utility, we need to select one of as high a utility as possible (``the selection problem''). Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The goal is to optimize the overall sequential decision process of measurements and selection. Value of information (VOI) is a well-known scheme for selecting measurements, but the intractability of the problem typically leads to using myopic VOI estimates. In the selection problem, myopic VOI frequently badly underestimates the value of information, leading to inferior sensing plans. We relax the strict myopic assumption into a scheme we term semi-myopic, providing a spectrum of methods that can improve the performance of sensing plans. In particular, we propose the efficiently computable method of ``blinkered'' VOI, and examine theoretical bounds for special cases. Empirical evaluation of ``blinkered'' VOI in the selection problem with normally distributed item values shows that is performs much better than pure myopic VOI.

View on arXiv
Comments on this paper