Network models have been popular for modeling and representing complex relationships and dependencies between observed variables. When data comes from a dynamic stochastic process, a single static network model cannot adequately capture transient dependencies, such as, gene regulatory dependencies throughout a developmental cycle of an organism. Kolar et al (2010b) proposed a method based on kernel-smoothing l1-penalized logistic regression for estimating time-varying networks from nodal observations collected from a time-series of observational data. In this paper, we establish conditions under which the proposed method consistently recovers the structure of a time-varying network. This work complements previous empirical findings by providing sound theoretical guarantees for the proposed estimation procedure. For completeness, we include numerical simulations in the paper.
View on arXiv