ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0908.0319
84
3

Regret Bounds for Opportunistic Channel Access

3 August 2009
Sarah Filippi
Olivier Cappé
Aurélien Garivier
ArXiv (abs)PDFHTML
Abstract

We consider the task of opportunistic channel access in a primary system composed of independent Gilbert-Elliot channels where the secondary (or opportunistic) user does not dispose of a priori information regarding the statistical characteristics of the system. It is shown that this problem may be cast into the framework of model-based learning in a specific class of Partially Observed Markov Decision Processes (POMDPs) for which we introduce an algorithm aimed at striking an optimal tradeoff between the exploration (or estimation) and exploitation requirements. We provide finite horizon regret bounds for this algorithm as well as a numerical evaluation of its performance in the single channel model as well as in the case of stochastically identical channels.

View on arXiv
Comments on this paper