ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0908.2056
60
5

Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators

14 August 2009
Yuval Peres
S. Roch
ArXivPDFHTML
Abstract

Consider a Markov chain (ξv)v∈V∈[k]V(\xi_v)_{v \in V} \in [k]^V(ξv​)v∈V​∈[k]V on the infinite bbb-ary tree T=(V,E)T = (V,E)T=(V,E) with irreducible edge transition matrix MMM, where b≥2b \geq 2b≥2, k≥2k \geq 2k≥2 and [k]={1,...,k}[k] = \{1,...,k\}[k]={1,...,k}. We denote by LnL_nLn​ the level-nnn vertices of TTT. Assume MMM has a real second-largest (in absolute value) eigenvalue λ\lambdaλ with corresponding real eigenvector ν≠0\nu \neq 0ν=0. Letting σv=νξv\sigma_v = \nu_{\xi_v}σv​=νξv​​, we consider the following root-state estimator, which was introduced by Mossel and Peres (2003) in the context of the "recontruction problem" on trees: \begin{equation*} S_n = (b\lambda)^{-n} \sum_{x\in L_n} \sigma_x. \end{equation*} As noted by Mossel and Peres, when bλ2>1b\lambda^2 > 1bλ2>1 (the so-called Kesten-Stigum reconstruction phase) the quantity SnS_nSn​ has uniformly bounded variance. Here, we give bounds on the moment-generating functions of SnS_nSn​ and Sn2S_n^2Sn2​ when bλ2>1b\lambda^2 > 1bλ2>1. Our results have implications for the inference of evolutionary trees.

View on arXiv
Comments on this paper