ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0908.3710
76
5

Randomization for Security in Half-Duplex Two-Way Gaussian Channels

26 August 2009
Aly El Gamal
M. Youssef
H. El Gamal
ArXivPDFHTML
Abstract

This paper develops a new physical layer framework for secure two-way wireless communication in the presence of a passive eavesdropper, i.e., Eve. Our approach achieves perfect information theoretic secrecy via a novel randomized scheduling and power allocation scheme. The key idea is to allow Alice and Bob to send symbols at random time instants. While Alice will be able to determine the symbols transmitted by Bob, Eve will suffer from ambiguity regarding the source of any particular symbol. This desirable ambiguity is enhanced, in our approach, by randomizing the transmit power level. Our theoretical analysis, in a 2-D geometry, reveals the ability of the proposed approach to achieve relatively high secure data rates under mild conditions on the spatial location of Eve. These theoretical claims are then validated by experimental results using IEEE 802.15.4-enabled sensor boards in different configurations, motivated by the spatial characteristics of Wireless Body Area Networks (WBAN).

View on arXiv
Comments on this paper