526

The Dantzig selector and sparsity oracle inequalities

Abstract

Let \[Y_j=f_*(X_j)+\xi_j,\qquad j=1,...,n,\] where X,X1,...,XnX,X_1,...,X_n are i.i.d. random variables in a measurable space (S,A)(S,\mathcal{A}) with distribution Π\Pi and ξ,ξ1,...,ξn\xi,\xi_1,... ,\xi_n are i.i.d. random variables with Eξ=0{\mathbb{E}}\xi=0 independent of (X1,...,Xn).(X_1,...,X_n). Given a dictionary h1,...,hN:SR,h_1,...,h_N:S\mapsto{\mathbb{R}}, let fλ:=j=1Nλjhjf_{\lambda}:=\sum_{j=1}^N\lambda_jh_j, λ=(λ1,...,λN)RN.\lambda=(\lambda_1,...,\lambda_N)\in{\mathbb{R}}^N. Given ε>0,\varepsilon>0, define \[\hat{\Lambda}_{\varepsilon}:=\Biggl\{\lam bda\in{\mathbb{R}}^N:\max_{1\leq k\leq N}\Biggl|n^{-1}\sum_{j=1}^n\big l(f_{\lambda}(X_j)-Y_j\bigr)h_k(X_j)\Biggr|\leq\varepsilon \Biggr\}\] and \[\hat{\lambda}:=\hat{\lambda}^{\varepsilon}\in \operatorname {Arg min}\limits_{\lambda\in\hat{\Lambda}_{\varepsilon}}\|\lambda\|_{\ell_1}.\] In the case where f:=fλ,λRN,f_*:=f_{\lambda^*},\lambda^*\in {\mathbb{R}}^N, Candes and Tao [Ann. Statist. 35 (2007) 2313--2351] suggested using λ^\hat{\lambda} as an estimator of λ.\lambda^*. They called this estimator ``the Dantzig selector''. We study the properties of fλ^f_{\hat{\lambda}} as an estimator of ff_* for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of these results).

View on arXiv
Comments on this paper