ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0909.5168
79
16

Nonparametric estimation of covariance functions by model selection

28 September 2009
Jérémie Bigot
R. Biscay
Jean-Michel Loubes
Lilian Muñiz Alvarez
ArXiv (abs)PDFHTML
Abstract

We propose a model selection approach for covariance estimation of a multi-dimensional stochastic process. Under very general assumptions, observing i.i.d replications of the process at fixed observation points, we construct an estimator of the covariance function by expanding the process onto a collection of basis functions. We study the non asymptotic property of this estimate and give a tractable way of selecting the best estimator among a possible set of candidates. The optimality of the procedure is proved via an oracle inequality which warrants that the best model is selected.

View on arXiv
Comments on this paper