ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0910.4397
68
108

The Geometry of Generalized Binary Search

22 October 2009
Robert D. Nowak
ArXivPDFHTML
Abstract

This paper investigates the problem of determining a binary-valued function through a sequence of strategically selected queries. The focus is an algorithm called Generalized Binary Search (GBS). GBS is a well-known greedy algorithm for determining a binary-valued function through a sequence of strategically selected queries. At each step, a query is selected that most evenly splits the hypotheses under consideration into two disjoint subsets, a natural generalization of the idea underlying classic binary search. This paper develops novel incoherence and geometric conditions under which GBS achieves the information-theoretically optimal query complexity; i.e., given a collection of N hypotheses, GBS terminates with the correct function after no more than a constant times log N queries. Furthermore, a noise-tolerant version of GBS is developed that also achieves the optimal query complexity. These results are applied to learning halfspaces, a problem arising routinely in image processing and machine learning.

View on arXiv
Comments on this paper