ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0911.3796
109
362

Break detection in the covariance structure of multivariate time series models

19 November 2009
Alexander Aue
Siegfried Hormann
Lajos Horváth
M. Reimherr
ArXivPDFHTML
Abstract

In this paper, we introduce an asymptotic test procedure to assess the stability of volatilities and cross-volatilites of linear and nonlinear multivariate time series models. The test is very flexible as it can be applied, for example, to many of the multivariate GARCH models established in the literature, and also works well in the case of high dimensionality of the underlying data. Since it is nonparametric, the procedure avoids the difficulties associated with parametric model selection, model fitting and parameter estimation. We provide the theoretical foundation for the test and demonstrate its applicability via a simulation study and an analysis of financial data. Extensions to multiple changes and the case of infinite fourth moments are also discussed.

View on arXiv
Comments on this paper