Providing an analytical solution for the problem of finding Fastest Distributed Consensus (FDC) is one of the challenging problems in the field of sensor networks. Most of the methods proposed so far deal with the FDC averaging algorithm problem by numerical convex optimization methods and in general no closed-form solution for finding FDC has been offered up to now except in [3] where the conjectured answer for path has been proved. Here in this work we present an analytical solution for the problem of Fastest Distributed Consensus for the Path network using semidefinite programming particularly solving the slackness conditions, where the optimal weights are obtained by inductive comparing of the characteristic polynomials initiated by slackness conditions.
View on arXiv