ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1002.4789
62
116

On dimension folding of matrix- or array-valued statistical objects

25 February 2010
Bing Li
Min Kyung Kim
N. Altman
ArXivPDFHTML
Abstract

We consider dimension reduction for regression or classification in which the predictors are matrix- or array-valued. This type of predictor arises when measurements are obtained for each combination of two or more underlying variables--for example, the voltage measured at different channels and times in electroencephalography data. For these applications, it is desirable to preserve the array structure of the reduced predictor (e.g., time versus channel), but this cannot be achieved within the conventional dimension reduction formulation. In this paper, we introduce a dimension reduction method, to be called dimension folding, for matrix- and array-valued predictors that preserves the array structure. In an application of dimension folding to an electroencephalography data set, we correctly classify 97 out of 122 subjects as alcoholic or nonalcoholic based on their electroencephalography in a cross-validation sample.

View on arXiv
Comments on this paper