ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1003.2941
92
43
v1v2 (latest)

Universal Sparse Modeling

15 March 2010
Ignacio Francisco Ramírez Paulino
Guillermo Sapiro
ArXiv (abs)PDFHTML
Abstract

Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. In this work, we use tools from information theory, and in particular universal coding theory, to propose a framework for designing sparsity regularization terms which have several theoretical and practical advantages when compared to the more standard l0 or l1 ones, and which lead to improved coding performance and accuracy in reconstruction and classification tasks. We also report on further improvements obtained by imposing low mutual coherence and Gram matrix norm on the corresponding learned dictionaries. The presentation of the framework and theoretical foundations is complemented with examples in image denoising and classification.

View on arXiv
Comments on this paper