Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function

Abstract
This paper deals with the consistency of the least squares estimator of a convex regression function when the predictor is multidimensional. We characterize and discuss the computation of such an estimator via the solution of certain quadratic and linear programs. Mild sufficient conditions for the consistency of this estimator and its subdifferentials in fixed and stochastic design regression settings are provided. We also consider a regression function which is known to be convex and componentwise nonincreasing and discuss the characterization, computation and consistency of its least squares estimator.
View on arXivComments on this paper