107
109

Fast Reinforcement Learning for Energy-Efficient Wireless Communications

Abstract

We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g. multimedia data) over a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel conditions. In this report, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision process (MDP) and solve it online using reinforcement learning. The advantages of the proposed online method are that (i) it does not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM policies; (ii) it exploits partial information about the system so that less information needs to be learned than when using conventional reinforcement learning algorithms; and (iii) it obviates the need for action exploration, which severely limits the adaptation speed and run-time performance of conventional reinforcement learning algorithms.

View on arXiv
Comments on this paper