ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1010.1595
113
63
v1v2v3 (latest)

Using parallel computation to improve Independent Metropolis--Hastings based estimation

8 October 2010
Pierre E. Jacob
Christian P. Robert
Murray H. Smith
ArXiv (abs)PDFHTML
Abstract

In this paper, we consider the implications of the fact that parallel raw-power can be exploited by a generic Metropolis--Hastings algorithm if the proposed values are independent. In particular, we present improvements to the independent Metropolis--Hastings algorithm that significantly decrease the variance of any estimator derived from the MCMC output, for a null computing cost since those improvements are based on a fixed number of target density evaluations. Furthermore, the techniques developed in this paper do not jeopardize the Markovian convergence properties of the algorithm, since they are based on the Rao--Blackwell principles of Gelfand and Smith (1990), already exploited in Casella and Robert (1996), Atchade and Perron (2005) and Douc and Robert (2010). We illustrate those improvements both on a toy normal example and on a classical probit regression model, but stress the fact that they are applicable in any case where the independent Metropolis-Hastings is applicable.

View on arXiv
Comments on this paper