ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1010.2770
96
18

Online Multiple Kernel Learning for Structured Prediction

13 October 2010
Andre F. T. Martins
Mário A. T. Figueiredo
P. Aguiar
Noah A. Smith
Eric Xing
ArXiv (abs)PDFHTML
Abstract

Despite the recent progress towards efficient multiple kernel learning (MKL), the structured output case remains an open research front. Current approaches involve repeatedly solving a batch learning problem, which makes them inadequate for large scale scenarios. We propose a new family of online proximal algorithms for MKL (as well as for group-lasso and variants thereof), which overcomes that drawback. We show regret, convergence, and generalization bounds for the proposed method. Experiments on handwriting recognition and dependency parsing testify for the successfulness of the approach.

View on arXiv
Comments on this paper