Least Squares Ranking on Graphs, Hodge Laplacians, Time Optimality, and Iterative Methods

Given a set of alternatives to be ranked and some pairwise comparison values, ranking can be posed as a least squares computation on a graph. This was first used by Leake for ranking football teams. The residual can be further analyzed to find inconsistencies in the given data, and this leads to a second least squares problem. This whole process was formulated recently by Jiang et al. as a Hodge decomposition of the edge values. Recently, Koutis et al., showed that linear systems involving symmetric diagonally dominant (SDD) matrices can be solved in time approaching optimality. By using Hodge 0-Laplacian and 2-Laplacian, we give various results on when the normal equations for ranking are SDD and when iterative Krylov methods should be used. We also give iteration bounds for conjugate gradient method for these problems.
View on arXiv