ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1011.6326
78
100

New Null Space Results and Recovery Thresholds for Matrix Rank Minimization

29 November 2010
Samet Oymak
B. Hassibi
ArXivPDFHTML
Abstract

Nuclear norm minimization (NNM) has recently gained significant attention for its use in rank minimization problems. Similar to compressed sensing, using null space characterizations, recovery thresholds for NNM have been studied in \cite{arxiv,Recht_Xu_Hassibi}. However simulations show that the thresholds are far from optimal, especially in the low rank region. In this paper we apply the recent analysis of Stojnic for compressed sensing \cite{mihailo} to the null space conditions of NNM. The resulting thresholds are significantly better and in particular our weak threshold appears to match with simulation results. Further our curves suggest for any rank growing linearly with matrix size nnn we need only three times of oversampling (the model complexity) for weak recovery. Similar to \cite{arxiv} we analyze the conditions for weak, sectional and strong thresholds. Additionally a separate analysis is given for special case of positive semidefinite matrices. We conclude by discussing simulation results and future research directions.

View on arXiv
Comments on this paper