Deformed Statistics Free Energy Model for Source Separation using Unsupervised Learning

Abstract
A generalized-statistics variational principle for source separation is formulated by recourse to Tsallis' entropy subjected to the additive duality and employing constraints described by normal averages. The variational principle is amalgamated with Hopfield-like learning rules resulting in an unsupervised learning model. The update rules are formulated with the aid of q-deformed calculus. Numerical examples exemplify the efficacy of this model.
View on arXivComments on this paper