ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1104.5566
110
14
v1v2 (latest)

Limits of Preprocessing

29 April 2011
Stefan Szeider
ArXiv (abs)PDFHTML
Abstract

We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning. We show that, subject to a complexity theoretic assumption, none of the considered problems can be reduced by polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, such as induced width or backdoor size. Our results provide a firm theoretical boundary for the performance of polynomial-time preprocessing algorithms for the considered problems.

View on arXiv
Comments on this paper