ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.0565
45
112

Multi-stage Convex Relaxation for Feature Selection

3 June 2011
Tong Zhang
ArXivPDFHTML
Abstract

A number of recent work studied the effectiveness of feature selection using Lasso. It is known that under the restricted isometry properties (RIP), Lasso does not generally lead to the exact recovery of the set of nonzero coefficients, due to the looseness of convex relaxation. This paper considers the feature selection property of nonconvex regularization, where the solution is given by a multi-stage convex relaxation scheme. Under appropriate conditions, we show that the local solution obtained by this procedure recovers the set of nonzero coefficients without suffering from the bias of Lasso relaxation, which complements parameter estimation results of this procedure.

View on arXiv
Comments on this paper