184
v1v2 (latest)

On the Computational Complexity of Stochastic Controller Optimization in POMDPs

Michael L. Littman
Abstract

We show that the problem of finding an optimal stochastic 'blind' controller in a Markov decision process is an NP-hard problem. The corresponding decision problem is NP-hard, in PSPACE, and SQRT-SUM-hard, hence placing it in NP would imply breakthroughs in long-standing open problems in computer science. Our result establishes that the more general problem of stochastic controller optimization in POMDPs is also NP-hard. Nonetheless, we outline a special case that is convex and admits efficient global solutions.

View on arXiv
Comments on this paper