ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1107.4153
77
28

Performance and Convergence of Multi-user Online Learning

21 July 2011
Cem Tekin
M. Liu
ArXivPDFHTML
Abstract

We study the problem of allocating multiple users to a set of wireless channels in a decentralized manner when the channel quali- ties are time-varying and unknown to the users, and accessing the same channel by multiple users leads to reduced quality due to interference. In such a setting the users not only need to learn the inherent channel quality and at the same time the best allocations of users to channels so as to maximize the social welfare. Assuming that the users adopt a certain online learning algorithm, we investigate under what conditions the socially optimal allocation is achievable. In particular we examine the effect of different levels of knowledge the users may have and the amount of communications and cooperation. The general conclusion is that when the cooperation of users decreases and the uncertainty about channel payoffs increases it becomes harder to achieve the socially opti- mal allocation.

View on arXiv
Comments on this paper